首页 > 用户画像 > 正文

一、客户服务体系中用用户画像和客户画像有什么区别呢?

基于用户画像的设计与实现

用户画像是指已经在使用或则使用过的群体,而客户画像是指,潜在客户,进行界定 分析 解决

搜一下:客户服务体系中用用户画像和客户画像有什么区别呢?

二、如何做“用户画像”?

用户画像制作

首先讲一下么是用户画像,用户画像是通过用户调研去了解用户,根据他们的社会属性、生活习惯、消费行为等主要信息的数据之后,完美地抽象出一个用户的商业全貌。用户画像的核心工作是为用户打标签,打标签的重要目的之一是为了让人能够理解并且方便计算机处理。

构建用户画像有什么好处呢,用户画像可以让商家在产品设计的过程中能够更加关注在目标用户的洗好和行为来进行产品设计,而且用户画像作用不仅仅找到用户的主需求,很多隐形的需求都会被发掘出来。而且商家广告投放等方面,能进一步提升精准度,提高信息获取的效率,从而减少无作用的浪费。

最后是如何构建用户画像,要建立用户画像必须建立在真实数据的基础上,将构建用户画像平台所需的数据分成用户、商品、渠道三类,然后按产品需要,给不同的用户特征贴上合适的标签。标签需要精简易区分少交叉重叠,这样是为了方便数据统计,构建数据集合,后续进行数据挖掘和聚合分析。最终是用户画像的呈现,用户画像的呈现分为两个部分,一部分是显性的呈现,呈现的是用户的给俺个标签特点;另一部分是隐形的,呈现的是需要我们去分析的用户潜在需求。显性的标签就是用现在的特点需求。而这些隐形的标签所代表的需求可以为以后的产品发展起到指引的作用。
二、为什么需要用户画像
用户画像的核心工作是为用户打标签,打标签的重要目的之一是为了让人能够理解并且方便计算机处理,如,可以做分类统计:喜欢红酒的用户有多少?喜欢红酒的人群中,男、女比例是多少?
也可以做数据挖掘工作:利用关联规则计算,喜欢红酒的人通常喜欢什么运动品牌?利用聚类算法分析,喜欢红酒的人年龄段分布情况?
大数据处理,离不开计算机的运算,标签提供了一种便捷的方式,使得计算机能够程序化处理与人相关的信息,甚至通过算法、模型能够“理解” 人。当计算机具备这样的能力后,无论是搜索引擎、推荐引擎、广告投放等各种应用领域,都将能进一步提升精准度,提高信息获取的效率。
三、如何构建用户画像
一个标签通常是人为规定的高度精炼的特征标识,如年龄段标签:25~35岁,地域标签:北京,标签呈现出两个重要特征:语义化,人能很方便地理解每个标签含义。这也使得用户画像模型具备实际意义。能够较好的满足业务需求。如,判断用户偏好。短文本,每个标签通常只表示一种含义,标签本身无需再做过多文本分析等预处理工作,这为利用机器提取标准化信息提供了便利。
人制定标签规则,并能够通过标签快速读出其中的信息,机器方便做标签提取、聚合分析。所以,用户画像,即:用户标签,向我们展示了一种朴素、简洁的方法用于描述用户信息。
3.1 数据源分析
构建用户画像是为了还原用户信息,因此数据来源于:所有用户相关的数据。
对于用户相关数据的分类,引入一种重要的分类思想:封闭性的分类方式。如,世界上分为两种人,一种是学英语的人,一种是不学英语的人;客户分三类,高价值客户,中价值客户,低价值客户;产品生命周期分为,投入期、成长期、成熟期、衰退期…所有的子分类将构成了类目空间的全部集合。
这样的分类方式,有助于后续不断枚举并迭代补充遗漏的信息维度。不必担心架构上对每一层分类没有考虑完整,造成维度遗漏留下扩展性隐患。另外,不同的分类方式根据应用场景,业务需求的不同,也许各有道理,按需划分即可。
本文将用户数据划分为静态信息数据、动态信息数据两大类。

静态信息数据
用户相对稳定的信息,如图所示,主要包括人口属性、商业属性等方面数据。这类信息,自成标签,如果企业有真实信息则无需过多建模预测,更多的是数据清洗工作,因此这方面信息的数据建模不是本篇文章重点。
动态信息数据
用户不断变化的行为信息,如果存在上帝,每一个人的行为都在时刻被上帝那双无形的眼睛监控着,广义上讲,一个用户打开网页,买了一个杯子;与该用户傍晚溜了趟狗,白天取了一次钱,打了一个哈欠等等一样都是上帝眼中的用户行为。当行为集中到互联网,乃至电商,用户行为就会聚焦很多,如上图所示:浏览凡客首页、浏览休闲鞋单品页、搜索帆布鞋、发表关于鞋品质的微博、赞“双十一大促给力”的微博消息。等等均可看作互联网用户行为。
本篇文章以互联网电商用户,为主要分析对象,暂不考虑线下用户行为数据(分析方法雷同,只是数据获取途径,用户识别方式有些差异)。
在互联网上,用户行为,可以看作用户动态信息的唯一数据来源。如何对用户行为数据构建数据模型,分析出用户标签,将是本文着重介绍的内容。
3.2 目标分析
用户画像的目标是通过分析用户行为,最终为每个用户打上标签,以及该标签的权重。如,红酒 0.8、李宁 0.6。
标签,表征了内容,用户对该内容有兴趣、偏好、需求等等。
权重,表征了指数,用户的兴趣、偏好指数,也可能表征用户的需求度,可以简单的理解为可信度,概率。
3.3 数据建模方法
下面内容将详细介绍,如何根据用户行为,构建模型产出标签、权重。一个事件模型包括:时间、地点、人物三个要素。每一次用户行为本质上是一次随机事件,可以详细描述为:什么用户,在什么时间,什么地点,做了什么事。
什么用户:关键在于对用户的标识,用户标识的目的是为了区分用户、单点定位。

三、构建用户画像的主要步骤包括哪些及每个部分主要完成的工作是什么

用户画像模型

用户画像又称用户角色(Persona),作为一种勾画目标用户、联系用户诉求与设计方向的有效工具,用户画像在各领域得到了广泛的应用。我们在实际操作的过程中往往会以最为浅显和贴近生活的话语将用户的属性、行为与期待联结起来。作为实际用户的虚拟代表,用户画像所形成的用户角色并不是脱离产品和市场之外所构建出来的,形成的用户角色需要有代表性能代表产品的主要受众和目标群体。

一般的,用户画像在产品没有上线、市场前景较为模糊、产品需求还需探索的阶段,定性化的用户画像能有效地节省时间、资源,在较短的时间通过桌面研究、访谈等定性化的方法来获得用户画像是一种比较可行和最优的方式。而事实上,用户画像是一种能将定性与定量方法很好结合在一起的载体,通过定量化的前期调研能获得一个对于用户群较为精准的认识,在后期的用户角色的建立中能很好地对用户优先顺序进行排序,将核心的、规模较大的用户着重突出出来。定性化的方法虽然无法对不同单位的特征作数量上的比较和统计分析,但能对观察资料进行归纳、分类、比较,进而对某个或某类现象的性质和特征作出概括,在角色建构的过程中定性化的方式能获得大量用户的生活情境、使用场景、用户心智等资料,进而形成活生生的用户类型。基于后台数据的支持和挖掘,可以用户画像选择将定量化和定性化方法相结合来创建用户画像。

用户画像是在创造一系列的“典型”或者“象征性”的用户,但用户画像的一个更高层次的功用在于使用用户画像融合边缘情况的行为或需求。
通俗来讲,用户画像是一种勾画目标用户、联系用户诉求与设计方向的有效工具,它在各领域已经得到了广泛应用。建立用户画像,“标签”是其最核心的部分,而包括多层次标签结构的定义、标签逻辑定义、多种标签生成方式等完整的标签管理模块非常重要,支持手工批量打标签、自动化流程标签、自动化规则标签、模型计算标签和自定义逻辑标签等不同的生成方式的系统平台,有强大的标签模板库能供各个行业选择,有效缩短建立整体标签库的时间。


Xinstall-App渠道统计SDK(https://www.xinstall.com),一款助您大幅降低开发与运营成本,实现场景化、精准化,数据化,简单化助力APP运营实现快速拉新、留存、促活,提升用户转化以及效果的App全渠道统计工具。

网站所收集到的公开内容均来自于互联网或用户投稿,并不代表本站认同其观点,也不对网站内容的真实性负责,如有侵权行为请及时联系删除!

猜你喜欢
文章评论已关闭!
picture loss