一、如何做“用户画像”?
首先讲一下么是用户画像,用户画像是通过用户调研去了解用户,根据他们的社会属性、生活习惯、消费行为等主要信息的数据之后,完美地抽象出一个用户的商业全貌。用户画像的核心工作是为用户打标签,打标签的重要目的之一是为了让人能够理解并且方便计算机处理。
构建用户画像有什么好处呢,用户画像可以让商家在产品设计的过程中能够更加关注在目标用户的洗好和行为来进行产品设计,而且用户画像作用不仅仅找到用户的主需求,很多隐形的需求都会被发掘出来。而且商家广告投放等方面,能进一步提升精准度,提高信息获取的效率,从而减少无作用的浪费。
最后是如何构建用户画像,要建立用户画像必须建立在真实数据的基础上,将构建用户画像平台所需的数据分成用户、商品、渠道三类,然后按产品需要,给不同的用户特征贴上合适的标签。标签需要精简易区分少交叉重叠,这样是为了方便数据统计,构建数据集合,后续进行数据挖掘和聚合分析。最终是用户画像的呈现,用户画像的呈现分为两个部分,一部分是显性的呈现,呈现的是用户的给俺个标签特点;另一部分是隐形的,呈现的是需要我们去分析的用户潜在需求。显性的标签就是用现在的特点需求。而这些隐形的标签所代表的需求可以为以后的产品发展起到指引的作用。
二、为什么需要用户画像
用户画像的核心工作是为用户打标签,打标签的重要目的之一是为了让人能够理解并且方便计算机处理,如,可以做分类统计:喜欢红酒的用户有多少?喜欢红酒的人群中,男、女比例是多少?
也可以做数据挖掘工作:利用关联规则计算,喜欢红酒的人通常喜欢什么运动品牌?利用聚类算法分析,喜欢红酒的人年龄段分布情况?
大数据处理,离不开计算机的运算,标签提供了一种便捷的方式,使得计算机能够程序化处理与人相关的信息,甚至通过算法、模型能够“理解” 人。当计算机具备这样的能力后,无论是搜索引擎、推荐引擎、广告投放等各种应用领域,都将能进一步提升精准度,提高信息获取的效率。
三、如何构建用户画像
一个标签通常是人为规定的高度精炼的特征标识,如年龄段标签:25~35岁,地域标签:北京,标签呈现出两个重要特征:语义化,人能很方便地理解每个标签含义。这也使得用户画像模型具备实际意义。能够较好的满足业务需求。如,判断用户偏好。短文本,每个标签通常只表示一种含义,标签本身无需再做过多文本分析等预处理工作,这为利用机器提取标准化信息提供了便利。
人制定标签规则,并能够通过标签快速读出其中的信息,机器方便做标签提取、聚合分析。所以,用户画像,即:用户标签,向我们展示了一种朴素、简洁的方法用于描述用户信息。
3.1 数据源分析
构建用户画像是为了还原用户信息,因此数据来源于:所有用户相关的数据。
对于用户相关数据的分类,引入一种重要的分类思想:封闭性的分类方式。如,世界上分为两种人,一种是学英语的人,一种是不学英语的人;客户分三类,高价值客户,中价值客户,低价值客户;产品生命周期分为,投入期、成长期、成熟期、衰退期…所有的子分类将构成了类目空间的全部集合。
这样的分类方式,有助于后续不断枚举并迭代补充遗漏的信息维度。不必担心架构上对每一层分类没有考虑完整,造成维度遗漏留下扩展性隐患。另外,不同的分类方式根据应用场景,业务需求的不同,也许各有道理,按需划分即可。
本文将用户数据划分为静态信息数据、动态信息数据两大类。
静态信息数据
用户相对稳定的信息,如图所示,主要包括人口属性、商业属性等方面数据。这类信息,自成标签,如果企业有真实信息则无需过多建模预测,更多的是数据清洗工作,因此这方面信息的数据建模不是本篇文章重点。
动态信息数据
用户不断变化的行为信息,如果存在上帝,每一个人的行为都在时刻被上帝那双无形的眼睛监控着,广义上讲,一个用户打开网页,买了一个杯子;与该用户傍晚溜了趟狗,白天取了一次钱,打了一个哈欠等等一样都是上帝眼中的用户行为。当行为集中到互联网,乃至电商,用户行为就会聚焦很多,如上图所示:浏览凡客首页、浏览休闲鞋单品页、搜索帆布鞋、发表关于鞋品质的微博、赞“双十一大促给力”的微博消息。等等均可看作互联网用户行为。
本篇文章以互联网电商用户,为主要分析对象,暂不考虑线下用户行为数据(分析方法雷同,只是数据获取途径,用户识别方式有些差异)。
在互联网上,用户行为,可以看作用户动态信息的唯一数据来源。如何对用户行为数据构建数据模型,分析出用户标签,将是本文着重介绍的内容。
3.2 目标分析
用户画像的目标是通过分析用户行为,最终为每个用户打上标签,以及该标签的权重。如,红酒 0.8、李宁 0.6。
标签,表征了内容,用户对该内容有兴趣、偏好、需求等等。
权重,表征了指数,用户的兴趣、偏好指数,也可能表征用户的需求度,可以简单的理解为可信度,概率。
3.3 数据建模方法
下面内容将详细介绍,如何根据用户行为,构建模型产出标签、权重。一个事件模型包括:时间、地点、人物三个要素。每一次用户行为本质上是一次随机事件,可以详细描述为:什么用户,在什么时间,什么地点,做了什么事。
什么用户:关键在于对用户的标识,用户标识的目的是为了区分用户、单点定位。
二、什么是用户画像
用户画像又称用户角色,作为一种勾画目标用户、联系用户诉求与设计方向的有效工具,用户画像在各领域得到了广泛的应用。我们在实际操作的过程中往往会以最为浅显和贴近生活的话语将用户的属性、行为与期待联结起来。作为实际用户的虚拟代表,用户画像所形成的用户角色并不是脱离产品和市场之外所构建出来的,形成的用户角色需要有代表性能代表产品的主要受众和目标群体。
用户画像的八要素
做产品怎么做用户画像,用户画像是真实用户的虚拟代表,首先它是基于真实的,它不是一个具体的人,另外一个是根据目标的行为观点的差异区分为不同类型,迅速组织在一起,然后把新得出的类型提炼出来,形成一个类型的用户画像。一个产品大概需要4-8种类型的用户画像。
用户画像的PERSONAL八要素
P代表基本性(Primary):指该用户角色是否基于对真实用户的情景访谈;
E代表同理性(Empathy):指用户角色中包含姓名、照片和产品相关的描述,该用户角色是否引同理心;
R代表真实性(Realistic):指对那些每天与顾客打交道的人来说,用户角色是否看起来像真实人物;
S代表独特性(Singular):每个用户是否是独特的,彼此很少有相似性;
O代表目标性(Objectives):该用户角色是否包含与产品相关的高层次目标,是否包含关键词来描述该目标;
N代表数量性(Number):用户角色的数量是否足够少,以便设计团队能记住每个用户角色的姓名,以及其中的一个主要用户角色;
A代表应用性(Applicable):设计团队是否能使用用户角色作为一种实用工具进行设计决策。
L代表长久性(Long):用户标签的长久性。
客户画像:客户信息标签化,完美地抽象出一个客户的信息全貌,可以看作企业应用大数据的根基。
客户画像的核心工作是为客户打标签,打标签的重要目的之一是为了让人能够理解并且方便计算机处理,如,可以做分类统计:喜欢红酒的用户有多少?喜欢红酒的人群中,男、女比例是多少?
也可以做数据挖掘工作:利用关联规则计算,喜欢红酒的人通常喜欢什么运动品牌?利用聚类算法分析,喜欢红酒的人年龄段分布情况?
大数据处理,离不开计算机的运算,标签提供了一种便捷的方式,使得计算机能够程序化处理与人相关的信息,甚至通过算法、模型能够“理解” 人。当计算机具备这样的能力后,无论是搜索引擎、推荐引擎、广告投放等各种应用领域,都将能进一步提升精准度,提高信息获取的效率。
什么是用户画像
用户画像又称用户角色,作为一种勾画目标用户、联系用户诉求与设计方向的有效工具,用户画像在各领域得到了广泛的应用。我们在实际操作的过程中往往会以最为浅显和贴近生活的话语将用户的属性、行为与期待联结起来。作为实际用户的虚拟代表,用户画像所形成的用户角色并不是脱离产品和市场之外所构建出来的,形成的用户角色需要有代表性能代表产品的主要受众和目标群体。
用户画像的八要素
做产品怎么做用户画像,用户画像是真实用户的虚拟代表,首先它是基于真实的,它不是一个具体的人,另外一个是根据目标的行为观点的差异区分为不同类型,迅速组织在一起,然后把新得出的类型提炼出来,形成一个类型的用户画像。一个产品大概需要4-8种类型的用户画像。
用户画像的PERSONAL八要素
P代表基本性(Primary):指该用户角色是否基于对真实用户的情景访谈;
E代表同理性(Empathy):指用户角色中包含姓名、照片和产品相关的描述,该用户角色是否引同理心;
R代表真实性(Realistic):指对那些每天与顾客打交道的人来说,用户角色是否看起来像真实人物;
S代表独特性(Singular):每个用户是否是独特的,彼此很少有相似性;
O代表目标性(Objectives):该用户角色是否包含与产品相关的高层次目标,是否包含关键词来描述该目标;
N代表数量性(Number):用户角色的数量是否足够少,以便设计团队能记住每个用户角色的姓名,以及其中的一个主要用户角色;
A代表应用性(Applicable):设计团队是否能使用用户角色作为一种实用工具进行设计决策。
L代表长久性(Long):用户标签的长久性。
原发布者:98778680
用户画像www.crxy.cn课程安排初步用户画像如何创建用户像推荐引擎的项目架构设计对采集数据清洗对数据字段打标签用户画像指标统计分析用户画像的十种应用场景什么是用户画像?用户画像:通过各个维度对用户或者产品特征属性的刻画,并对这些特征分析统计挖掘潜在价值信息!完美地抽象出一个用户的信息全貌,可以看作企业应用大数据的根基。分析的维度:可以按照人口属性和产品行为属性进行综合分析;人口属性:地域、年龄、性别、文化、职业、收入、生活习惯、消费习惯等;产品行为:产品类别、活跃频率、产品喜好、产品驱动、使用习惯、产品消费等;用户画像的本质专业术语:人物角色企业使用术语:用户画像技术原理:数据清理分析统计打标签用户信息标签化为什么使用用户画像企业发展最重要的是什么?管理?渠道?营销?用户画像的核心工作是为用户打标签,打标签的重要目的之一是为了让人能够理解并且方便计算机处理,如,可以做分类统计:喜欢红酒的用户有多少?喜欢红酒的人群中,男、女比例是多少?也可以做数据挖掘工作:利用关联规则计算,喜欢红酒的人通常喜欢什么运动品牌?利用聚类算法分析,喜欢红酒的人年龄段分布情况?大数据处理,离不开计算机的运算,标签提供了一种便捷的方式,使得计算机能够程序化处理与人相关的信息,甚至通过算法、模型能够“理解”人。当计算机具备这样的能力后,无论是搜索引擎、推荐引擎、
三、用户画像指的是什么?
用户画像是对自己本身用户的一个展现,将众多用户的行为属性进行告诉聚类集合,然后分类成3-6类用户,分别定义他们的性别,年龄,地域,爱好等等,可以根据用户行为和用户画像来做产品与推广的规划,并验证修正,给运营一个方向。具体的还是自己做做看。
客户画像:客户信息标签化,完美地抽象出一个客户的信息全貌,可以看作企业应用大数据的根基。
客户画像的核心工作是为客户打标签,打标签的重要目的之一是为了让人能够理解并且方便计算机处理,如,可以做分类统计:喜欢红酒的用户有多少?喜欢红酒的人群中,男、女比例是多少?
也可以做数据挖掘工作:利用关联规则计算,喜欢红酒的人通常喜欢什么运动品牌?利用聚类算法分析,喜欢红酒的人年龄段分布情况?
大数据处理,离不开计算机的运算,标签提供了一种便捷的方式,使得计算机能够程序化处理与人相关的信息,甚至通过算法、模型能够“理解” 人。当计算机具备这样的能力后,无论是搜索引擎、推荐引擎、广告投放等各种应用领域,都将能进一步提升精准度,提高信息获取的效率。
四、哪位大神知道有什么好用的用户画像软件,最好是免费的?
推荐:百度指数。百度指数(Baidu Index)是以百度海量网民行为数据为基础的数据分析平台,是当前互联网乃至整个数据时代最重要的统计分析平台之一,自发布之日便成为众多企业营销决策的重要依据。(来自百度百科的介绍)工作的时候就经常用百度指数,具体有以下几点可以很方便的了解用户画
五、没有预算,怎么简单获取用户画像?
方法大概分几种,我详细说一下:人群分类,划分用户的使用意愿我会这样子去理解人群的分类,从行为学上去分析,在有效市场里,由于对市场认知和需求满足程度的不同,会存在这样的三类人,分别称为:明事理、有感觉、无所谓。举个例子,我从一款理财产品的角度去剖析这三类人:1、“明事理”用户这部分
六、什么是用户画像?
首先,什么是用户画像?企业收集消费者社会属性、生活习惯、消费行为等主要信息的数据,比如用户是男是女,哪里人,工资多少,有没有谈恋爱,喜欢什么,准备剁手购物吗等等。之后为便于各业务应用,再将这些信息进行沉淀、加工和抽象,形成一个以用户标志为主key的标签树,用于全面刻画用户的属性和
Xinstall(https://www.xinstall.com)一款助您大幅降低开发与运营成本,实现场景化、精准化,助力APP运营实现快速拉新、留存、促活,提升用户转化的活动营销工具。
网站所收集到的公开内容均来自于互联网或用户投稿,并不代表本站认同其观点,也不对网站内容的真实性负责,如有侵权行为请及时联系删除!